direct product, metabelian, supersoluble, monomial, A-group, rational, 2-hyperelementary
Aliases: C22×S3, C3⋊C23, C6⋊C22, (C2×C6)⋊3C2, SmallGroup(24,14)
Series: Derived ►Chief ►Lower central ►Upper central
C3 — C22×S3 |
Generators and relations for C22×S3
G = < a,b,c,d | a2=b2=c3=d2=1, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >
Character table of C22×S3
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 3 | 6A | 6B | 6C | |
size | 1 | 1 | 1 | 1 | 3 | 3 | 3 | 3 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ4 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ6 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ8 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ10 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | -1 | 1 | 1 | -1 | orthogonal lifted from D6 |
ρ11 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | -1 | -1 | 1 | 1 | orthogonal lifted from D6 |
ρ12 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | -1 | 1 | -1 | 1 | orthogonal lifted from D6 |
(1 10)(2 11)(3 12)(4 7)(5 8)(6 9)
(1 4)(2 5)(3 6)(7 10)(8 11)(9 12)
(1 2 3)(4 5 6)(7 8 9)(10 11 12)
(1 7)(2 9)(3 8)(4 10)(5 12)(6 11)
G:=sub<Sym(12)| (1,10)(2,11)(3,12)(4,7)(5,8)(6,9), (1,4)(2,5)(3,6)(7,10)(8,11)(9,12), (1,2,3)(4,5,6)(7,8,9)(10,11,12), (1,7)(2,9)(3,8)(4,10)(5,12)(6,11)>;
G:=Group( (1,10)(2,11)(3,12)(4,7)(5,8)(6,9), (1,4)(2,5)(3,6)(7,10)(8,11)(9,12), (1,2,3)(4,5,6)(7,8,9)(10,11,12), (1,7)(2,9)(3,8)(4,10)(5,12)(6,11) );
G=PermutationGroup([[(1,10),(2,11),(3,12),(4,7),(5,8),(6,9)], [(1,4),(2,5),(3,6),(7,10),(8,11),(9,12)], [(1,2,3),(4,5,6),(7,8,9),(10,11,12)], [(1,7),(2,9),(3,8),(4,10),(5,12),(6,11)]])
G:=TransitiveGroup(12,10);
(1 10)(2 11)(3 12)(4 7)(5 8)(6 9)(13 22)(14 23)(15 24)(16 19)(17 20)(18 21)
(1 4)(2 5)(3 6)(7 10)(8 11)(9 12)(13 16)(14 17)(15 18)(19 22)(20 23)(21 24)
(1 2 3)(4 5 6)(7 8 9)(10 11 12)(13 14 15)(16 17 18)(19 20 21)(22 23 24)
(1 17)(2 16)(3 18)(4 14)(5 13)(6 15)(7 23)(8 22)(9 24)(10 20)(11 19)(12 21)
G:=sub<Sym(24)| (1,10)(2,11)(3,12)(4,7)(5,8)(6,9)(13,22)(14,23)(15,24)(16,19)(17,20)(18,21), (1,4)(2,5)(3,6)(7,10)(8,11)(9,12)(13,16)(14,17)(15,18)(19,22)(20,23)(21,24), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24), (1,17)(2,16)(3,18)(4,14)(5,13)(6,15)(7,23)(8,22)(9,24)(10,20)(11,19)(12,21)>;
G:=Group( (1,10)(2,11)(3,12)(4,7)(5,8)(6,9)(13,22)(14,23)(15,24)(16,19)(17,20)(18,21), (1,4)(2,5)(3,6)(7,10)(8,11)(9,12)(13,16)(14,17)(15,18)(19,22)(20,23)(21,24), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24), (1,17)(2,16)(3,18)(4,14)(5,13)(6,15)(7,23)(8,22)(9,24)(10,20)(11,19)(12,21) );
G=PermutationGroup([[(1,10),(2,11),(3,12),(4,7),(5,8),(6,9),(13,22),(14,23),(15,24),(16,19),(17,20),(18,21)], [(1,4),(2,5),(3,6),(7,10),(8,11),(9,12),(13,16),(14,17),(15,18),(19,22),(20,23),(21,24)], [(1,2,3),(4,5,6),(7,8,9),(10,11,12),(13,14,15),(16,17,18),(19,20,21),(22,23,24)], [(1,17),(2,16),(3,18),(4,14),(5,13),(6,15),(7,23),(8,22),(9,24),(10,20),(11,19),(12,21)]])
G:=TransitiveGroup(24,11);
C22×S3 is a maximal subgroup of
D6⋊C4
C22×S3 is a maximal quotient of C4○D12 D4⋊2S3 Q8⋊3S3
action | f(x) | Disc(f) |
---|---|---|
12T10 | x12-4x6+1 | 224·318 |
Matrix representation of C22×S3 ►in GL3(ℤ) generated by
1 | 0 | 0 |
0 | -1 | 0 |
0 | 0 | -1 |
-1 | 0 | 0 |
0 | 1 | 0 |
0 | 0 | 1 |
1 | 0 | 0 |
0 | 0 | -1 |
0 | 1 | -1 |
-1 | 0 | 0 |
0 | 0 | -1 |
0 | -1 | 0 |
G:=sub<GL(3,Integers())| [1,0,0,0,-1,0,0,0,-1],[-1,0,0,0,1,0,0,0,1],[1,0,0,0,0,1,0,-1,-1],[-1,0,0,0,0,-1,0,-1,0] >;
C22×S3 in GAP, Magma, Sage, TeX
C_2^2\times S_3
% in TeX
G:=Group("C2^2xS3");
// GroupNames label
G:=SmallGroup(24,14);
// by ID
G=gap.SmallGroup(24,14);
# by ID
G:=PCGroup([4,-2,-2,-2,-3,259]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^2=c^3=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations
Export
Subgroup lattice of C22×S3 in TeX
Character table of C22×S3 in TeX